Interval Routing and Minor-Monotone Graph Parameters

نویسندگان

  • Erwin M. Bakker
  • Hans L. Bodlaender
  • Richard B. Tan
  • Jan van Leeuwen
چکیده

We survey a number of minor-monotone graph parameters and their relationship to the complexity of routing on graphs. In particular we compare the interval routing parameters κslir(G) and κsir(G) with Colin de Verdière’s graph invariant μ(G) and its variants λ(G) and κ(G). We show that for all the known characterizations of θ(G) with θ(G) being μ(G), λ(G) or κ(G), that θ(G) ≤ 2κslir(G) − 1 and θ(G) ≤ 2κsir(G) and conjecture that these inequalities always hold. We show that θ(G) ≤ 4κslir(G) − 1 and θ(G) ≤ 4κsir(G) + 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Relation Between Two Minor-Monotone Graph Parameters

We prove that for each graph (G) (G) + 2, where and are minor-monotone graph invariants introduced by Colin de Verdi ere 3] and van der Holst, Laurent and Schrijver 5]. It is also shown that a graph G exists with (G) < (G). The graphs G with maximal planar complement and (G) = jV (G)j ? 4, characterised by Kotlov, Lovv asz and Vempala, are shown to be forbidden minors for fH j (H) < jV (G)j ? 4g.

متن کامل

Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph

Tree-width, and variants that restrict the allowable tree decompositions, play an important role in the study of graph algorithms and have application to computer science. The zero forcing number is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by a graph. We establish relationships between these parameters, including several Colin de Verdière type...

متن کامل

Nordhaus-Gaddum Problems for Colin de Verdière Type Parameters, Variants of Tree-width, and Related Parameters

A Nordhaus-Gaddum problem for a graph parameter is to determine a tight lower or upper bound for the sum or product of the parameter evaluated on a graph and on its complement. This article surveys Nordhaus-Gaddum results for the Colin de Verdière type parameters μ,ν , and ξ ; tree-width and its variants largeur d’arborescence, path-width, and proper path-width; and minor monotone ceilings of v...

متن کامل

Angle-Monotone Graphs: Construction and Local Routing

A geometric graph in the plane is angle-monotone of width γ if every pair of vertices is connected by an angle-monotone path of width γ, a path such that the angles of any two edges in the path differ by at most γ. Angle-monotone graphs have good spanning properties. We prove that every point set in the plane admits an angle-monotone graph of width 90◦, hence with spanning ratio √ 2, and a subq...

متن کامل

On Interval Routing Schemes and Treewidth

In this paper, we investigate which processor networks allow klabel Interval Routing Schemes, under the assumption that costs of edges may vary. We show that for each fixed k ≥ 1, the class of graphs allowing such routing schemes is closed under minor-taking in the domain of connected graphs, and hence has a linear time recognition algorithm. This result connects the theory of compact routing w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006